Thuộc tính Alkan

Vật lý

Cấu trúc phân tử, cụ thể là diện tích bề mặt của phân tử, xác định điểm sôi của alkan: diện tích bề mặt càng nhỏ thì điểm sôi càng thấp, do các lực van der Waals giữa các phân tử là yếu hơn. Việc giảm diện tích bề mặt có thể thu được nhờ tạo nhánh hay là cấu trúc vòng. Điều này có nghĩa là trong thực tế các alkan có số nguyên tử cacbon nhiều hơn thông thường sẽ có điểm sôi cao hơn so với các alkan có số nguyên tử cacbon nhỏ hơn, và các alkan mạch nhánh và cycloankan có điểm sôi thấp hơn so với các dạng mạch thẳng của chúng. Ở điều kiện tiêu chuẩn, từ CH4 tới C4H10 thì các alkan có dạng khí; từ C5H12 tới C17H36 chúng là lỏng; và từ C18H38 thì chúng là rắn. Điểm sôi tăng khoảng 20 tới 30 °C cho một nhóm CH2.

Các điểm nóng chảy của các alkan cũng tăng theo chiều tăng của số nguyên tử cacbon (ngoại lệ duy nhất là propan). Tuy nhiên, điểm nóng chảy tăng chậm hơn nhiều so với sự tăng của điểm sôi, cụ thể là đối với các alkan lớn. Ngoài ra, điểm nóng chảy của các alkan chứa lẻ số nguyên tử cacbon tăng nhanh hơn so với điểm nóng chảy của các alkan chứa chẵn số nguyên tử cacbon (xem hình): nguyên nhân của hiện tượng này là do "mật độ bao gói" cao hơn của các alkan chứa chẵn số nguyên tử cacbon. Điểm nóng chảy của các alkan mạch nhánh có thể cao hơn hoặc thấp hơn so với các alkan mạch thẳng tương ứng, phụ thuộc vào hiệu quả của sự bao gói phân tử: nó là đúng phần nào với đối với các isoankan (các đồng phân 2-metyl), thông thường có điểm nóng chảy cao hơn so với các đồng phân mạch thẳng của nó.

Các alkan không có tính dẫn điện và về cơ bản chúng cũng không bị phân cực bởi điện trường. Vì lý do này chúng không tạo ra các liên kết hydro và vì vậy không hòa tan trong các dung môi phân cực như nước. Do các liên kết hydro giữa các phân tử nước riêng biệt là tách biệt với các phân tử alkan, sự cùng tồn tại của alkan và nước dẫn tới sự tăng trong trật tự phân tử (giảm entropy). Do không có liên kết đáng kể giữa các phân tử nước và phân tử alkan, định luật hai nhiệt động lực học cho rằng việc giảm entropy này được giảm thiểu bằng cách giảm thiểu sự tiếp xúc giữa alkan và nước: các alkan được coi là không ưa nước và chúng là đẩy nước.

Độ hòa tan của chúng trong các dung môi không phân cực là tương đối tốt, một thuộc tính gọi là ưa mỡ. Các alkan khác nhau là có thể trộn lẫn nhau với tỷ lệ bất kỳ.

Tỷ trọng của các alkan thông thường tăng theo chiều tăng của số nguyên tử cacbon, nhưng vẫn thấp hơn tỷ trọng của nước. Vì thế, các alkan tạo thành lớp trên trong hỗn hợp alkan-nước.

Hóa học

Các alkan nói chung thể hiện tính hoạt động hóa học tương đối yếu, do các liên kết C–H và C–C của chúng là tương đối ổn định và không dễ phá vỡ. Không giống như các hợp chất hữu cơ khác, chúng không có các nhóm chức.

Chúng phản ứng rất kém với các chất có tính điện ly hay phân cực. Các giá trị pKa của tất cả các alkan là trên 60, vì thế trên thực tế chúng là trơ với các axít hay base. Tính trơ này là nguồn gốc của thuật ngữ parafin (tiếng Latinh para + affinis, với nghĩa là "thiếu ái lực"). Trong dầu thô các phân tử alkan giữ các thuộc tính hóa học không thay đổi trong hàng triệu năm.

Tuy nhiên các phản ứng oxy hóa-khử của các alkan, cụ thể là với oxy và các halogen, là có thể do các nguyên tử cacbon là ở trong các điều kiện khử mạnh; trong trường hợp của methan, trạng thái oxy hóa thấp nhất đối với cacbon (−4) đã đạt tới. Phản ứng với oxy dẫn tới sự cháy; với các halogen là các phản ứng thế.

Các gốc tự do và các phân tử với các điện tử không bắt cặp đóng vai trò quan trọng trong phần lớn các phản ứng của alkan, chẳng hạn như trong crackingsửa đổi mà ở đó các alkan mạch dài bị chia cắt thành các alkan và anken mạch ngắn hay các alkan mạch thẳng bị chuyển thành các đồng phân mạch nhánh.

Trong các alkan mạch nhánh lớn thì các góc liên kết có thể khác đáng kể so với giá trị tối ưu (109,5°) để đảm bảo cho các nhóm khác có đủ không gian cần thiết. Điều này sinh ra sự căng trong phân tử, được biết đến như là sự cản trở không gian, và nó có thể tắng độ hoạt động hóa học đáng kể.

Quang phổ

Gần như mọi hợp chất hữu cơ đều chứa các liên kết C–C và C–H, và vì thế chúng thể hiện một số dặc trưng của alkan trong quang phổ của chúng. Các alkan đáng chú ý là do không có các nhóm khác và vì vậy chúng thiếu vắng các đặc trưng quang phổ khác.

Phổ hồng ngoại

Kiểu kéo căng C–H tạo ra sự hấp thụ mạnh ở khoảng 2850 và 2960 cm−1, trong khi kiểu kéo căng C–C hấp thụ trong khoảng giữa 800 và 1300 cm−1. Kiểu liên kết C–H phụ thuộc vào bản chất của nhóm: các nhóm metyl xuất hiện ở dải 1450 cm−1 và 1375 cm−1, trong khi các nhóm metylen xuất hiện ở dải 1465 cm−1 và 1450 cm−1. Các mạch cacbon với nhiều hơn 4 nguyên tử cacbon xuất hiện vạch hấp thụ yếu ở khoảng 725 cm−1.

Phổ NMR

Sự cộng hưởng proton của các alkan thông thường tìm thấy ở δH = 0–1. Sự cộng hưởng cacbon-13 phụ thuộc vào số nguyên tử hydro đính vào cacbon: δC = 8–30 (metyl), 15–55 (metylen), 20–60 (metyn). Sự cộng hưởng cacbon-13 của nguyên tử cacbon trong nhóm bốn là rất yếu, do thiếu hiệu ứng tăng Overhauser hạt nhânthời gian dãn dài: nó có thể bỏ qua trong quang phổ thông thường.

Phép đo phổ khối lượng

Các alkan có năng lượng ion hóa cao, và các ion thông thường là rất yếu. Các kiểu phân chia rất khó diễn giải, nhưng trong trường hợp của các alkan mạch nhánh thì mạch cacbon có xu hướng bị tách ra ở cacbon thứ ba hay thứ tư do tính ổn định tương đối của các gốc tự do tạo thành. Sự phân chia tạo ra do mất nhóm metyl đơn (M−15) thông thường không tồn tại, và sự phân chia khác thông thường được dàn theo các khoảng của 14 đơn vị khối lượng, tương ứng với sự mất liên tiếp các nhóm CH2.